Dynamical Gauge Symmetry Breaking on Compactified Space

Tatsu MISUMI BNL

Kashiwa, TM, [arXiv:1302.2196]. Kouno, TM, Kashiwa, Makiyama, Sasaki, Yahiro, in preparation.

Dynamical Gauge Symmetry Breaking - DGSB

Understanding of DGSB: Key in Modern Physics Frontier CW mechanism, Technicolor, <u>Gauge-Higgs</u>.....

Gauge Symmetry breaking by Non-Abelian AB effect

<u> Aharonov-Bohm Effect</u>

$$\frac{e}{\hbar} \int_C A dx \iff$$
 Wilson-loop phase

$$\delta\phi = rac{e}{\hbar} \int_C Adx \iff ext{Wilson-loop phase}$$

$$e^{i\delta\phi} \sim W = P \exp(ig \int_C Adx)$$

- Even if no field strength(x-indep A), AB phase affects physics.
- Gauge-invariant quantity.

Cannot be gauged away. It is Physics!

Purely quantum phenomenon!

SU(N) gauge theory on $R^d \times S^1$.

BC:
$$A(x,y+L) = UA(x,y)U^{\dagger}$$

$$\psi(x,y+L) = e^{i\beta}U\psi(x,y)$$

- Wilson loop in compacted direction $W = P \exp \left\{ ig \int_C dy A_y \right\}$
 - I. constant eigenvalues $\operatorname{diag}[e^{2\pi iq_1}, e^{2\pi iq_2}, \cdots, e^{2\pi iq_N}]$
 - 2. invariant under gauge transformation keeping B.C.
 - 3. cannot be gauged away, and contributes to physics

→ Non-abelian AB effect

cf.) Effective longitudinal gluon mass in Finite-T QCD Gross, Pisarski, Yaffe (1981)

aPBC:
$$m^2 = \frac{1}{3}g^2T^2(N_c + \frac{1}{2}N_F)$$
 PBC: $m^2 = \frac{1}{3}g^2T^2(N_c - N_F)$

 $N_F > N_c$ means tachyonic, leading to $\langle A_y \rangle \neq 0$ GSB could be !

• Hosotani mechanism Hosotani (1983)

$$q_i \neq q_j$$

$q_i \neq q_j$ spontaneous gauge symmetry breaking

- Determined dynamically, depends on matter.
- Spectrum $m_n^2 = \frac{1}{L^2} \left(n + q_i q_j \right)^2 \rightarrow \text{massive gauge boson}$

e.g.)
$$q_1 = q_2 = q_3 \neq q_4 = q_5$$
, $SU(5) \rightarrow SU(3) \times SU(2) \times U(1)$

• Gauge-Higgs unification Manton (1979) Hosotani (1983)

Nonzero q breaks gauge symmetry in (4+1)D

 \rightarrow Higgs as fluctuation of A_y $(m_H \sim O(g/L))$

cf.)
$$SO(5)\times U(1)$$
 RS model Agashe, Contino, Pomarol (2005)

$$SO(5)\times U(1) \to SO(4)\times U(1) \to SU(2)\times U(1) \to U(1)$$
 Orbifold b.c. brane dynamics Hosotani mech.

Stable Higgs: $m_{\rm H}=130~{\rm GeV}$

Hosotani mechanism has been eventually studied in a different context....., although they did not focus on it.

Myers, Ogilvie (07)(08)(09) Cossu, D'Elia(09) Nishimura, Ogilvie(10) Z₃ confined phase survives at small L? (volume-indep.)

- Pure Eguchi-Kawai : Z₃ broken Bhanot-Heller-Neuberger (1982)
- Eguchi-Kawai w/ adj. : Z₃ restored? Kovtun-Unsal-Yaffe (2007)

QCD with PBC adj. matter is also a hot topic in the area.

Myers-Ogilvie (2007) Lattice Finite-T QCD with PBC adj. matter Cossu-D'Elia (2009)

- Rich phase structure found!
- Should be understood from Hosotani mechanism.

<u>Purpose</u>

- I. Understand phase structure in gauge theory with PBC fermions, focusing on SGSB.
- 2. Obtain useful information for phenom. models.
- 3. Seek other setups leading to SGSB.

- Tools · One-loop effective potential
 - Polyakov-loop-extended NJL

SU(N) perturbative one-loop effective potential

Gross-Pisarski-Yaffe (1981)

I. Replace $\tau \to y$, $\beta \to L$.

2. Wilson-loop phases \rightarrow zero modes $\langle A_y \rangle = \frac{2\pi}{gL} \operatorname{diag}[q_1, \cdots, q_N]$

Gauge:
$$V_g(q) = -\frac{2}{L^4\pi^2} \sum_{i,j=1}^{N} \sum_{n=1}^{\infty} \left(1 - \frac{1}{N} \delta_{ij}\right) \frac{\cos[2n\pi q_{ij}]}{n^4}$$

Fund.:
$$\mathcal{V}_f^{\phi}(q; N_f, m_f) = \frac{2N_f m_f^2}{\pi^2 L^2} \sum_{i=1}^N \sum_{n=1}^\infty \frac{K_2(n m_f L)}{n^2} \cos[2\pi n (q_i + \phi)]$$

Adj.:
$$\mathcal{V}_a^{\phi}(q; N_a, m_a) = \frac{2N_a m_a^2}{\pi^2 L^2} \sum_{i,j=1}^{N} \sum_{n=1}^{\infty} \left(1 - \frac{1}{N} \delta_{ij}\right) \frac{K_2(n m_a L)}{n^2} \cos[2\pi n (q_{ij} + \phi)]$$

with
$$q_1+q_2+\cdots+q_{N-1}+q_N=0 \pmod{1}$$

SU(N) perturbative one-loop effective potential

Gross-Pisarski-Yaffe (1981)

I. Replace $\tau \to y$, $\beta \to L$.

2. Wilson-loop phases \rightarrow zero modes $\langle A_y \rangle = \frac{2\pi}{gL} \operatorname{diag}[q_1, \cdots, q_N]$

Gauge:
$$\mathcal{V}_g(q) = -\frac{2}{L^4\pi^2} \sum_{i,j=1}^N \sum_{n=1}^\infty \left(1 - \frac{1}{N} \delta_{ij}\right) \frac{\cos[2n\pi q_{ij}]}{n^4} q_i - q_j$$
 compacted scale

Fund.:
$$\mathcal{V}_f^{\phi}(q;N_f,m_f) = \frac{2N_f m_f^2}{\pi^2 L^2} \sum_{i=1}^N \sum_{n=1}^\infty \frac{K_2(nm_f L)}{n^2} \cos[2\pi n(q_i+\phi)]$$
 boundary condition $\varphi=0: periodic$ $\varphi=1/2: anti-periodic$

Adj.:
$$\mathcal{V}_{a}^{\phi}(q; N_{a}, m_{a}) = \frac{2N_{a}m_{a}^{2}}{\pi^{2}L^{2}} \sum_{i,j=1}^{N} \sum_{n=1}^{\infty} \left(1 - \frac{1}{N}\delta_{ij}\right) \frac{K_{2}(nm_{a}L)}{n^{2}} \cos[2\pi n(q_{ij} + \phi)]$$
 # of adj. flavor Adj. mass

with
$$q_1+q_2+\cdots+q_{N-1}+q_N=0 \pmod{1}$$

How to observe GSB

Look for global minima in effective potential

 $q_1+q_2+q_3=0\pmod{1}$ \rightarrow a function of q_1,q_2 as $\mathcal{V}(q_1,q_2)$

Ex.) Contour plot for SU(3) pure gauge on $R^3 \times S^1$

Minima other than these three indicates GSB!

Non-GSB cases

4D Gauge Symmetry Breaking (on $R^3 \times S^1$)

Kashiwa, TM [arXiv:1302.2196]

Cossu, Hatanaka, Hosotani, Itou, Noaki, work in progress

SU(3) with PBC adjoint (m=0)

- · Center Z₃ is unbroken.
- Polyakov-loop reflects Z₃

$$\mathcal{V}(q_1, q_2) = \mathcal{V}_g + \mathcal{V}_a^0$$

SU(3) gauge symmetry broken to $U(1)\times U(1)$

Hosotani (1983)

SU(3) with PBC adjoint ($m \neq 0$)

$$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) (0, 0, 0) (-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}) \qquad (\frac{1}{2}, \frac{1}{2}, 0) (\frac{1}{6}, \frac{1}{6}, -\frac{1}{3}) (-\frac{1}{6}, -\frac{1}{6}, \frac{1}{3})$$

$$q_1 = q_2 = q_3$$

SU(3)

$$(\frac{1}{2}, \frac{1}{2}, 0) (\frac{1}{6}, \frac{1}{6}, -\frac{1}{3}) (-\frac{1}{6}, -\frac{1}{6}, \frac{1}{3})$$

$$q_1 = q_2 \neq q_3$$

$$(\frac{1}{3}, -\frac{1}{3}, 0)$$
 $q_1 \neq q_2 \neq q_3$

$$U(I)\times U(I)$$

Phase diagram & Polyakov-loop

- → "Deconfined" SU(3)
- $SU(2)\times U(1) \rightarrow "Split"$ (Phenomenologically most desirable)
- $U(1)\times U(1)$ \rightarrow "Re-confined" (zero Polyakov-loop $\Phi=0$)

cf.) $\Phi > 0$ in confined phase is due to large fluctuation in strong-coupling regime.

SU(2)×U(1) phase can be enlarged? → yes! By fund. matters

SU(3) with adj. & fund. with PBC

- The center is broken by fund. matter.
- Vacua moved to ReΦ<0 direction.

$$\mathcal{V}(q_1, q_2) = \mathcal{V}_g + \mathcal{V}_a^0 + \mathcal{V}_f^0$$

- $SU(2)\times U(1)$ minimum: deeper and stable due to Z_3 breaking
- $U(I)\times U(I)$ minimum: moves and unstable (approaching to S)

Re-interpretation of adj. lattice results Cossu, D'Elia (2009)

Re-interpretation of adj. lattice results Cossu, D'Elia (2009)

Chiral properties

• Chiral model with PBC adjoint 2 flavors Nishimura, Ogilvie (2010)

$$\mathcal{L}_{\mathrm{PNJL}} = \bar{\psi}(\gamma_{\mu}D_{\mu} + m)\psi - g_{S}[(\bar{\psi}\psi)^{2} + (\bar{\psi}i\gamma_{5}\vec{\tau}\psi)^{2}] + \mathcal{V}_{g} \qquad (D_{\mu} = \partial_{\mu} + iA_{4})$$
Fukushima (2004)

$$\mathcal{V}(q_1, q_2, \sigma) = \mathcal{V}_g + \mathcal{V}_F + \mathcal{V}_{\chi}$$

- Dimension parameters $\Lambda_{\mathrm{cutoff}}, g_S$
- fixed so as to reproduce aPBC results Karsch, Lutgemeier (1998)

Fund: $\Lambda = 0.63 \text{ GeV}$ and $g_S \Lambda^2 = 2.19$

Adj: $\Lambda = 23.22 \text{ GeV} \text{ and } g_S \Lambda^2 = 0.63$

Chiral symmetry restored slowly for PBC adj. Cossu, D'Elia (2009)

Phase diagram w/ chiral part

· Qualitatively unchanged, but the scaling disappears.

5D Gauge Symmetry Breaking (on $R^4 \times S^1$)

Kashiwa, TM [arXiv:1302.2196]

Cossu, Hatanaka, Hosotani, Itou, Noaki, work in progress

5D SU(N) one-loop effective potential

I. Replace $\tau \to y$, $\beta \to L$.

2. Wilson-loop phases \rightarrow zero modes $\langle A_y \rangle = \frac{2\pi}{gL} \operatorname{diag}[q_1, \cdots, q_N]$

Gauge:
$$V_g = -\frac{9}{4\pi^2 L^5} \sum_{i,j=1}^{N} \sum_{n=1}^{\infty} \left(1 - \frac{1}{N} \delta_{ij}\right) \frac{\cos(2\pi n q_{ij})}{n^5}$$

Fund.:
$$\mathcal{V}_f^{\phi}(N_f, m_f) = \frac{\sqrt{2}N_f(m_f/L)^{5/2}}{\pi^{5/2}} \sum_{i=1}^N \sum_{n=1}^\infty \frac{K_{5/2}(nm_fL)}{n^{5/2}} \cos[2\pi n(q_i + \phi)]$$

Adj.:
$$V_a^{\phi}(N_a, m_a) = \frac{\sqrt{2}N_a(m_a/L)^{5/2}}{\pi^{5/2}} \sum_{i,j=1}^{N} \sum_{n=1}^{\infty} \left(1 - \frac{1}{N}\delta_{ij}\right) \frac{K_{5/2}(nm_aL)}{n^{5/2}} \cos[2\pi n(q_{ij} + \phi)]$$

with
$$q_1+q_2+\cdots+q_{N-1}+q_N=0 \pmod{1}$$

5D SU(3) with adjoint PBC

$$\mathcal{V}(q_1, q_2) = \mathcal{V}_g + \mathcal{V}_a^0$$

- Qualitatively the same as 4D, but narrower SU(2)×U(1).
- Z₃ symmetric Polyakov-loop distribution is the same.

5D SU(3) w/ adj. & fund.

$$\mathcal{V}(q_1, q_2) = \mathcal{V}_g + \mathcal{V}_a^0 + \mathcal{V}_f^0$$

Split phase dominant!

- SU(2)×U(1) phase enhancement is more prominent.
- Phase structure is more sensitive to # of flavors.

What happens in the potential?

Competition of adj. and gluon effective potentials

Gluon
$$\mathcal{V}_g = \underbrace{\sum_{L^4\pi^2}^2 \sum_{i,j=1}^3 \sum_{n=1}^\infty \left(1 - \frac{1}{3}\delta_{ij}\right) \frac{\cos[2n\pi q_{ij}]}{n^4} }_{\text{opposite sign }!}$$
PBC adj.
$$\mathcal{V}_a = \underbrace{+\frac{4}{L^4\pi^2} \sum_{i,j=1}^3 \sum_{n=1}^\infty \left(1 - \frac{1}{3}\delta_{ij}\right) \frac{\cos[2\pi n q_{ij}]}{n^4} }_{\text{Substituting }}$$

$$Z_3 \text{ unbroken}$$

Can be realized by Fund. quarks with appropriate B.C.?

The answer is Yes!

Flavor-dependent twisted B.C. (FTBC)

Kouno, TM, Kashiwa, Makiyama, Sasaki, Yahiro, in preparation.

FTBC for 3 fundamental flavors in SU(3) Sakai, Kouno, Sakai, Yahiro (2012)

 \mathbb{Z}_3 center is preserved by use of \mathbb{Z}_3 of flavor SU(3).

One-loop effective potential for FTBC

$$\mathcal{V}_{f}^{FT} = +\frac{4}{L^{4}\pi^{2}} \sum_{i}^{3} \sum_{n=1}^{3} \sum_{n=1}^{\infty} \frac{\cos[2\pi n q_{if}]}{n^{4}} \qquad q_{if} = q_{i} + (f-1)/3$$
 similar form to adj. case cf.) $v_{a} = +\frac{4}{L^{4}\pi^{2}} \sum_{i=1}^{3} \sum_{n=1}^{\infty} \left(1 - \frac{1}{3}\delta_{ij}\right) \frac{\cos[2\pi n q_{ij}]}{n^{4}}$

GSB and phase structure for FTBC

SU(3) broken only to $SU(2)\times U(1)$!

1/L

 $q_1 = q_2 \neq q_3$

Polyakov loop distribution

- Six possible vacua in GB phase
- They are paired as

$$(q_1, q_2, q_3)_A = -(q_1, q_2, q_3)_B$$

 $(A_\mu \to -A_\mu, \text{Im}\Phi \to -\text{Im}\Phi)$

· Can be interpreted as C pairs.

FTBC is flavor-imaginary-chemical potential.

Charge conjugation is also spontaneously broken!

Summary

- I. Rich phase structure with SGSB in gauge theory on compactified space with PBC.
- 2. Fundamental flavors with PBC works to enhance SU(2)×U(1) phase.
- 3. Fund. fermions with FTBC also leads to SU(2)×U(1) SGSB.
- 4. Specific chiral properties.

Future works

• Further lattice study 4D to check our results.

Lattice study for 5D as cutoff theory.

Application of FTBC to BSM, QCD....

Elitzur's theorem

$$<$$
P> \neq 0 on the lattice

- · DGSB by Hosotani mechanism is topological phenomenon.
- · Can be indirectly observed from Gauge-invariant quantity.

SU(3) adj. with non-perturbative deformation

$$\mathcal{V}_g^{\text{np}} = -\frac{2}{L^4 \pi^2} \sum_{i,j=1}^{N} \sum_{n=1}^{\infty} \left(1 - \frac{1}{N} \delta_{ij} \right) \frac{\cos(2n\pi q^{ij})}{n^4} + \frac{M^2}{2\pi^2 L^2} \sum_{i,j=1}^{N} \sum_{n=1}^{\infty} \left(1 - \frac{1}{N} \delta_{ij} \right) \frac{\cos(2n\pi q^{ij})}{n^2}$$

Orbifold and chiral fermions

orbifold B.C.

$$\begin{pmatrix} A_{\mu} \\ A_{y} \end{pmatrix}_{x,-y} = P_{0} \begin{pmatrix} A_{\mu} \\ -A_{y} \end{pmatrix}_{x,y} P_{0}^{\dagger}$$

$$\begin{pmatrix} A_{\mu} \\ A_{y} \end{pmatrix}_{x,L-y} = P_{1} \begin{pmatrix} A_{\mu} \\ -A_{y} \end{pmatrix}_{x,L+y} P_{1}^{\dagger}$$

Symmetry breaking by (P_0, P_1)

Chiral fermion

$$\psi(x, -y) = P_0 \gamma_5 \psi(x, y)$$

$$\psi(x, L - y) = P_1 \gamma_5 \psi(x, L + y)$$

EW theory

$$SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$$

Higgs: SU(2) doublet $\in A_y$

$$G \xrightarrow[(P_0, P_1)]{} SU(2) \times U(1) \xrightarrow[\theta_H \neq 0]{} U(1)$$

e.g.)SU(3)
$$P_0 = P_1 = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix} \quad A_{\mu} = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \quad A_y = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$$

SO(5)×U(1) gauge-higgs unification in RS

 $\theta_H \neq 0$